FUNCTION SPACES WITH HYPO-GRAPH FELL TOPOLOGY

Leijie Wang

June 7, 2018

For a topological space X, the Fell topology on the family Cld(X) of all non-empty closed sets in X is generated by the subbase consisting of the sets

 $U^{-} = \{ A \in \operatorname{Cld}(X) : U \cap A \neq \emptyset \}, K^{*} = \{ A \in \operatorname{Cld}(X) : K \cap A = \emptyset \},$

where U and K runs over open and compact sets in X respectively, and we denote this space by $\operatorname{Cld}_F(X)$.

For a Tychonoff space X and a linear pospace Y with linear order \leq , let C(X, Y) denote the set of all continuous maps from X to Y, and for every $f \in C(X, Y)$, let

$$\downarrow f = \{(x,s) \in X \times Y : s \le f(x)\} \in \operatorname{Cld}(X \times Y)$$

be the hypograph of f. $\downarrow C_F(X, Y)$ is the set $\{\downarrow f : f \in C(X, Y)\}$ endowed with subspace topology from $Cld_F(X \times Y)$.

In this talk we character Hausdorff, regular, separable, first and second countable property of the function space $\downarrow C_F(X, Y)$, and we also prove that $\downarrow C_F(X, \mathbb{I})$ is \mathfrak{P}_0 -space if and only if X is an \aleph_0 -space.